
This paper is included in the Proceedings of the
34th USENIX Security Symposium.

August 13–15, 2025 • Seattle, WA, USA
978-1-939133-52-6

Open access to the Proceedings of the
34th USENIX Security Symposium is sponsored by USENIX.

CoVault: Secure, Scalable Analytics of Personal Data
Roberta De Viti and Isaac Sheff, Max Planck Institute for Software Systems

(MPI-SWS), Saarland Informatics Campus; Noemi Glaeser, Max Planck Institute
for Security and Privacy (MPI-SP) and University of Maryland; Baltasar Dinis,

Instituto Superior Técnico (ULisboa), INESC-ID; Rodrigo Rodrigues, Instituto Superior
Técnico (ULisboa) / INESC-ID; Bobby Bhattacharjee, University of Maryland;
Anwar Hithnawi, ETH Zürich; Deepak Garg and Peter Druschel, Max Planck

Institute for Software Systems (MPI-SWS), Saarland Informatics Campus
https://www.usenix.org/conference/usenixsecurity25/presentation/de-viti

CoVault: Secure, Scalable Analytics of Personal Data

Roberta De Viti1, Isaac Sheff1∗, Noemi Glaeser2,4*
, Baltasar Dinis3*

, Rodrigo Rodrigues3,

Bobby Bhattacharjee4, Anwar Hithnawi5
*
, Deepak Garg1, and Peter Druschel1

1Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus
2Max Planck Institute for Security and Privacy (MPI-SP)

3Instituto Superior Técnico (ULisboa), INESC-ID
4University of Maryland

5ETH Zürich

Abstract
There is growing awareness that the analysis of personal data,
such as individuals’ mobility, financial, and health data, can
provide significant benefits to society. However, liberal so-
cieties have so far refrained from such analytics, arguably
due to the lack of secure analytics platforms that scale to
billions of records while operating in a very strong threat
model. We contend that one fundamental gap here is the lack
of an architecture that can scale (actively-)secure multi-party
computation (MPC) horizontally without weakening secu-
rity. To bridge this gap, we present CoVault, an analytics
platform that leverages server-aided MPC and trusted execu-
tion environments (TEEs) to colocate the MPC parties in a
single datacenter without reducing security, and scales MPC
horizontally to the datacenter’s available resources. CoVault
scales well empirically. For example, CoVault can scale the
DualEx 2PC protocol [60] to perform epidemic analytics for a
country of 80M people (about 11.85B data records/day) on a
continuous basis using one core pair for every 30,000 people.

1 Introduction

Data about individuals’ health, diet, activity, mobility, social
contacts, and finances is being captured at high resolution
by smart devices and apps, by online services, and by of-
fline services such as hospitals and banks that store customer
data. Large-scale analysis of this data could benefit (i) public
health, e.g., by studying the spread of epidemics with high
spatio-temporal resolution, or new and rare diseases; (ii) sus-
tainability, e.g., by informing transportation, energy, and urban
planning; (iii) social welfare, e.g., by uncovering disparities in
income and access to education or services; and (iv) economic
stability, e.g., by providing insight into markets, among many
others.

Yet, liberal societies have mostly refrained from making
personal data available for large-scale analysis, even if doing
so would clearly be in the public interest (e.g., for scientific

∗Affiliation at time work was done.

research). Arguably, this is largely out of concern that data
leaks and misuse would harm individuals and businesses,
erode the public’s trust and deter voluntary data contributions.
There is a growing realization, however, that this conservative
approach conflicts with urgent societal challenges like pub-
lic health and sustainability, where savings on the order of
billions of Euros are thought possible using data-driven inno-
vation in the EU alone [30,31]. To this end, the EU Parliament
approved the Data Governance Act (DGA) [4], which seeks
to facilitate voluntary contributions of high-resolution data
from diverse data sources—individuals, private companies
and public bodies—for analysis by authorized parties (e.g.,
scientists, government agencies) in the EU. The DGA also
defines data intermediaries who act as data clearinghouses
and facilitate analytics by authorized parties securely.

Given the sensitivity and volume of the data in question,
we believe that the following properties are fundamental to
any data intermediary or similar secure analytics platform:
(1) Data confidentiality at all times – while data is in use, at
rest and in transit. Confidentiality should not rely on a sin-
gle root of trust for any component (even hardware) because
strong adversaries who can compromise or backdoor software
and hardware are fathomable in this context, (2) Scalabil-
ity: The platform should scale to datasets spanning entire
nations or continents (hundreds of billions of records) and
millions of data sources, (3) Integrity of the analytics results,
which is important when analytics inform political, economic,
or healthcare decisions, and (4) Selective forward consent
(SFC): Each data source should be able to decide which anal-
ysis queries and which analysts can use its data, and set an
expiration time on the data.

To the best of our knowledge, the design of a platform
that satisfies just the first three properties together remains an
unsolved problem. By definition, data confidentiality without
a single root of trust requires secure multi-party computation
(MPC) [18, 36, 52, 65, 109]. However, owing to their onerous
computation and bandwidth overheads, MPC-based systems
have never been shown to scale to hundreds of billions of
records. Even the best contemporary MPC systems scale only

USENIX Association 34th USENIX Security Symposium 567

to millions of records [16, 29, 44, 81–83, 86, 100, 103], and
that too only with passive security, where even compromised
parties are assumed to follow the protocol – an unrealistic
assumption in our setting. Instead, we require MPC with
active security, which ensures confidentiality and integrity
even when compromised parties behave arbitrarily. In the
active setting, we are not aware of any MPC system that
scales even to millions of records.

Accordingly, this paper presents CoVault, a new system
that scales any underlying MPC protocol horizontally to the
resources of a datacenter. We do not invent sophisticated new
protocols. Rather, we observe that a careful combination of
existing distributed scaling techniques and hardware features
suffices to scale MPC horizontally. Furthermore, we observe
that these same techniques also enforce integrity of results
and SFC, yielding a system that satisfies all four properties
listed above.

We validate CoVault’s design by empirically demonstrat-
ing horizontal scaling in the 2-party setting for two actively-
secure, garbled circuit-based MPC protocols in slightly differ-
ent leakage models: malicious [66, 107] and malicious with a
1-bit leak (which leaks 1 bit of information for significantly
better performance) [60]. For comparison, we also discuss
how passively-secure MPC would scale horizontally with
CoVault, even though this is not our intended use case. Our
experiments focus specifically on MPC using garbled circuits
because our target application, query-based analytics, is domi-
nated by combinatorial operations such as integer comparison,
for which garbled circuits are more efficient than other MPC
protocols [90]. However, CoVault’s design does not depend
on garbled circuits and can be used to scale any class of MPC
protocols.

Next, we briefly outline our design and how it provides all
four properties, starting with horizontal scaling.

Scalability: Bandwidth problem. The main bottleneck in
scaling MPC protocols horizontally is network bandwidth. A
single pair of cores in the 2-party setting can saturate several
Gbps of network bandwidth when evaluating garbled circuits.
(Lower bandwidth increases query latency proportionally and
wastes CPU resources.) The required bandwidth increases
proportionally with the number of cores. For example, if each
party has 1,000 cores, a cross-party bandwidth of several Tbps
is needed to fully utilize the cores. Such high bandwidth is
available only inside a datacenter.

Thus, in order to scale MPC horizontally, it is necessary to
colocate the MPC parties in the same datacenter. However,
colocation increases the parties’ susceptibility to compromise
by the same technical, political, and physical means, thereby
negating the very purpose of using MPC.

Our first insight is that we can colocate parties in the same
datacenter, while preserving their independence to compro-
mise, by separating the parties’ software stacks and isolating
the parties in trusted execution environments (TEEs) of in-
dependent hardware vendors, such as Intel’s TDX, AMD’s

SEV-SNP and ARM’s CCA [1,13,62]. This design places the
root of trust in the infallibility of (n− t)-of-n heterogeneous
TEEs, i.e., it tolerates the compromise of up to t-of-n TEEs
(1-of-2 in our prototype). Using this idea, we can colocate
all MPC parties to obtain very high cross-party bandwidth
without weakening MPC security: To compromise confiden-
tiality or integrity, an attacker would have to compromise
more vendor-independent TEEs than the underlying MPC
protocol’s compromise threshold, which is an extremely high
bar for any attacker.

Although the isolation of MPC parties in diverse TEEs has
been considered in concurrent work for other purposes [32,
39], we believe that CoVault is the first system that leverages
diverse TEEs and party colocation to harness the large bisec-
tion bandwidth and core count of a datacenter to scale MPC
analytics without weakening the MPC threat model.
Scalability: Core parallelism. Even with the bandwidth issue
resolved, we need a way to exploit multi-core parallelism. We
observe that standard scaling techniques from the distributed
systems literature can be applied even when the underlying
compute units run MPC. Specifically, we implement MapRe-
duce [43] over MPC: Given an analytics query on a very
large private dataset, we divide the query’s MPC circuit into
small map and reduce circuits, which are scheduled across
the available cores at each party (as in standard MapReduce).

We implement mappers and reducers using standard MPC
circuits for the following basic operations on lists of records:
linear scans, sorting, compacting (moving marked entries to
the tail) and merging sorted lists. As we explain later, this set
of primitives suffices for all filter-groupby-aggregate queries.
We carefully avoid leaks through network side channels by
padding all communication between mappers and reducers to
fixed sizes. Additionally, we support data-dependent queries
through a new and simple oblivious data retrieval (ODR)
scheme that enables lookups through indexes on private fields
without revealing the data access pattern.

We note that MapReduce can be substituted with any other
distributed scaling paradigm, as long as the paradigm’s basic
primitives can be efficiently implemented in MPC circuits.
Summary of CoVault’s basic design. At a high-level,
CoVault combines horizontal scaling with server-aided
MPC [20, 33, 45, 64, 69, 94]. CoVault’s analytics backbone
consists of a fixed set of n administratively independent MPC
parties, each with a large number of dedicated servers, all
colocated in the same datacenter with high-bandwidth inter-
connects, and running in TEEs of n independent vendors.

Data sources – companies, individual devices and public
bodies – contribute their data to CoVault by secret-sharing
each datum among the n parties. The n parties store these
shares in local databases, possibly after pre-processing in
MPC (e.g., range-checks). Analytics queries are executed
by the n parties on the stored shares using MPC. The MPC
protocol must tolerate the malicious compromise of a subset
of the parties (up to a threshold denoted t), and all MPC

568 34th USENIX Security Symposium USENIX Association

computations are scaled horizontally by distributing them
across all available cores, as explained earlier.

CoVault is primarily designed for data donated by individu-
als, a setting that necessitates SFC and support for many data
sources, unlike prior work like Senate [90], where a small
number of sources contribute larger amounts of locally aggre-
gated data. While CoVault supports this latter configuration
as well, it is not its focus. Next, we describe how CoVault
supports integrity of outputs and SFC.

Integrity of outputs. In our server-aided MPC setting, ensur-
ing the integrity of outputs simplifies to two sub-problems:
(i) Input integrity: Verifying that all MPC parties compute on
unmodified data shares received from the data sources, and (ii)
Computation integrity: Ensuring that the MPC computation
executes correctly. Both sub-problems have standard solu-
tions, which we leverage. For input integrity, we use authenti-
cated secret sharing [38, 47, 93]. Each datum is secret-shared
with a MAC that is created by the datum’s source. A datum’s
MAC is checked inside MPC when the datum is used for
analytics, detecting any manipulation of data shares by rogue
parties. For computation integrity, we rely on actively-secure
MPC protocols [18, 60, 66, 107], which detect any deviation
from the intended protocol.

Selective forward consent. We further observe that TEEs,
which are already a part of our design, can be harnessed to en-
force SFC as follows. The code of each TEE instance (running
on behalf of a MPC party) is only capable of participating
in a specific set of analytics queries, authorized by a specific
set of queriers up to a specific expiration time. The queries,
authorized queriers, and expiration time of each instance are
publicly advertised. A data source uploads data shares to a
TEE instance only if it consents to the instance’s queries, au-
thorized queriers, and expiration time, and it can attest – using
TEE attestation – that the instance’s code implements these
parameters. This enforces SFC.

Contributions. Our contributions include: (a) CoVault, a sys-
tem that scales MPC horizontally to datacenters, fully ex-
ploiting core parallelism. CoVault leverages diverse TEEs to
facilitate colocation of MPC parties with very high cross-party
bandwidth, without weakening independence of the parties;
(b) Three technical components of possibly independent inter-
est: A provably secure authenticated secret-sharing scheme
(§5), an actively secure 2PC protocol with a 1-bit leak that
reveals information to a third entity, not the computing parties
(§ 5), and a custom oblivious data retrieval (ODR) scheme
(§4.2) that supports database lookups on private indexes in
constant time; (c) An experimental evaluation of CoVault with
epidemic analytics as an example scenario, which shows that
CoVault can handle data for a country of 80M people using
a single core pair per 30,000 individuals. We are not aware
of any other MPC-based analytics platform that can securely
perform similarly complex queries in a comparably strong
threat model at this scale.

Query
classes

.

.

Party
 1

Secure Data Processors (SDPs)
Party
n

Analyst

Data
sources

MPC
.
.

Data shares

PS1 PSn

TEE type 1
TEE type n

. .

Figure 1: CoVault’s secure data processing. Conceptually,
data sources contribute their data in such a way that only
queries within a given query class can be executed on their
data, by analysts authorized by the query class, and for a pe-
riod defined by the query class. Concretely, (a) Each data
source secret-shares its data into n authenticated shares, en-
crypts each share for a different MPC party, checks that the
parties have been verified, and uploads the shares to an un-
trusted database in a datacenter. (b) Queries are processed
by a set of SDPs hosted in the same datacenter. Each of the
n SDPs, one for each party, is encapsulated by a different
TEE type and accesses its corresponding data share; the SDPs
jointly perform MPC, and deliver their respective share of the
query result to an authorized analyst. (c) Provisioning servers
(PSs), one per party and implemented in the party’s TEE type,
attest and provision all SDPs of a party with their keys.

2 CoVault Overview

We survey relevant building blocks, sketch CoVault’s archi-
tecture, and provide a roadmap for the rest of the paper.

2.1 Building blocks

Secret sharing is a method for sharing a secret value among
multiple parties, such that the value can only be reconstructed
if a sufficient fraction of shares (possibly all) are combined.
Authenticated secret sharing adds auxiliary information that
allows the parties to verify the authenticity of a value that
they have reconstructed from their shares.

Secure multi-party computation (MPC) enables multiple
parties to jointly compute a function without revealing their
respective inputs. MPC protocols are either passively secure
(corrupt parties are semi-honest [59, 109]) or actively secure
(corrupt parties may be malicious [106]). In t-of-n active secu-
rity, up to t of the n parties may be compromised. Depending
on the protocol, t varies from n/3 to n−1.

Garbled circuits (GCs) are a specific class of secure 2-party
computation protocols (2PC) (n = 2, t = 1) [89]. GCs exist
with both passive and active security. A specific GC protocol,
DualEx [60], achieves active security apart from leaking 1
bit of the input, in exchange for achieving performance close
to that of passive security. Techniques exist both to restrict

USENIX Association 34th USENIX Security Symposium 569

the predicate the adversary can leak and the probability that
a leakage occurs [70]. All GCs are data oblivious because
circuits have no control flow.
Trusted execution environments (TEEs) are supported by
several recent general-purpose CPUs, e.g., Intel SGX, Intel
TDX, AMD SEV and ARM CCA [9,13,35,62]. TEEs provide
confidentiality and integrity of data and computation under a
threat model that tolerates compromised operating systems,
hypervisors, and even some physical attacks [25, 35]. Newer
TEEs – SEV-SNP, TDX, and CCA – encapsulate an entire VM,
providing easy software migration. An attestation protocol
verifies that a VM executes in an authentic TEE of a given type
and that its initial memory state (code and data) matches an
expected secure hash value (measurement). Upon successful
attestation, the VM is provided with cryptographic material
needed to authenticate itself to remote parties and to access
data sealed for it. The security of a TEE depends on the
integrity of its vendor’s certificate chain, proprietary hardware,
and firmware.

2.2 CoVault roadmap and threat model
We introduce CoVault’s secure data processing component
(SDP) (see Figure 1) in §3. In §4, we show how to scale Co-
Vault’s query processing horizontally with MapReduce [43],
where each mapper and reducer is an instance of the SDP.
In §5, we present our prototype SDP implementation, which
relies on 2PC with garbled circuits. In §6, we evaluate CoVault
in the context of epidemic analytics as an example application
scenario, and compare its performance to other systems with
a similar threat model. A technical report (TR) [102] provides
formal security proofs for the primitives used in CoVault, and
other details.
Threat model. CoVault relies on an underlying MPC protocol
with t-of-n security in a deployment-chosen threat model (our
intended use-case is protocols with active security or active
security with fixed bit-leakage in exchange for significantly
better performance). CoVault inherits the adversary model
from the underlying MPC protocol used by the SDPs. CoVault
places the code of the n parties inside the TEE technologies
of n different vendors. Consequently, we assume that n− t
of these n TEE technologies/vendors are uncompromised;
the remaining t TEE technologies/vendors may be compro-
mised (statically) using any means allowed under the MPC
protocol’s adversarial model.

CoVault assumes that the software executed by the parties
inside TEEs is correct and the TEEs are properly attested.
One approach is to delegate these tasks—which have to be
performed by any secure system that relies on TEEs—to a
community of experts as described in the TR [102].

We assume that data sources follow the data contribution
protocol and do not deliberately contribute false or biased
data (data poisoning attacks). A malicious source can com-
promise the confidentiality and SFC of its own data (but not

of others’ data), and bias query results relying on its data
to the extent that the query is sensitive to that source’s data.
Defenses against data poisoning like integrity, consistency,
and plausibility checks are orthogonal to this work and can
be integrated into CoVault’s data ingress processing.

We make standard assumptions about the security of cryp-
tographic primitives used in CoVault’s design, and assume
a PTIME adversary. We assume that data is stored in Co-
Vault for periods short enough that the keys remain secure
despite advances in cryptanalysis and compute power. Denial-
of-service attacks are out of scope; they can be addressed with
orthogonal techniques.

TEEs have known vulnerabilities including root-key leaks,
attacks on remote attestation, vendor compromise, conven-
tional side-channel attacks (memory-access patterns, CPU
cache timing), microarchitectural side-channel attacks, and in-
tegrity attacks (power-based, Rowhammer) [25, 76]. Nonethe-
less, our approach raises the bar for vendor compromise and
implementation-specific attacks, and improves security over
TEE+MPC setups that place the root of trust in a single
TEE vendor (e.g., [72]). CoVault is immune to conventional
side-channel attacks as the underlying MPC protocols are
data oblivious. Software mitigations of microarchitectural
attacks—to the extent that they exist—can be applied inside
TEEs. Consequently, a successful attack on CoVault requires
the compromise of TEEs from t +1 distinct vendors running
hardened code without conventional side channels. We be-
lieve that success with such attacks is unlikely, but they are
possible in principle, and mitigating them is outside the scope
of this paper.

Deployment considerations with TEEs. TEE adoption for
commercial use is growing rapidly. Two leading Cloud
providers—Google Cloud and Azure—offer both AMD SEV-
SNP and Intel TDX TEEs with high-bandwidth intercon-
nects [7, 8]. These TEEs encapsulate entire VMs and the
Cloud providers support transparent VM deployment. Hence,
the additional deployment overhead is limited to code attesta-
tion (for each TEE vendor). To mitigate this burden, Cloud
providers offer client libraries, code wrappers and detailed
tutorials [5, 6].

3 Secure data processing

In this section, we present the design of CoVault’s secure data
processing, beginning with the API and then incrementally
refining a strawman design.

CoVault’s API is shown in Figure 2. Analysts who wish to
solicit data contributions define a query class using the Setup
operation. A query class is defined by the triple [Q,D, te],
where Q denotes a set of queries, D a set of authorized ana-
lysts, and te a time at which all contributed data should expire
and no longer be available for analysis. A data source con-
tributes data to a query class only if it is comfortable with the

570 34th USENIX Security Symposium USENIX Association

MPK[Q,D, te]← Setup(1κ,Q,D, te)
MPC to initialize a new query class and produce a public-private key pair (MPK[Q,D, te],MSK[Q,D, te]) bound to the class [Q,D, te].
MPK[Q,D, te] is published for data sources, MSK[Q,D, te] is retained by the n parties. Inputs: κ: security parameter, Q: set of allowed queries,
D: set of authorized analysts, te: expiration time. Outputs: n-element public key (MPK[Q,D, te]).

C← Contribute(MPK[Q,D, te],m)
Executed locally at a data source to contribute data m to the query class [Q,D, te]. Inputs: MPK[Q,D, te]: public key, m: data to encrypt.
Outputs: C: n encrypted shares of m.

q(m1, . . . ,mk)←Query(q,d,C1, . . . ,Ck)
MPC to compute q(m1, . . . ,mk). If the caller is d, Cis are encrypted shares of mis in the same query class [Q,D, te], d ∈ D, q ∈ Q, and
current time < te, then return q(m1, . . . ,mk), else return ⊥. Inputs: q: query, d: analyst, Ci: n encrypted shares of data from source i.
Outputs: q(m1, . . . ,mk) or ⊥.

Figure 2: CoVault’s API (MPK, MSK, C are n-element vectors, where n is the number of parties.)

class’s Q, D and te. Data sources contribute data to a query
class using the Contribute operation, and authorized analysts
may execute queries using the Query operation.

We aim to realize this API while satisfying the four
properties listed in §1:
1) Confidentiality. Contributed data remains confidential at
all times, except for releases allowed by SFC (see below).
2) Scalability. All data processing can be horizontally scaled
out within a single datacenter, without weakening our threat
model.
3) Integrity. Any modifications to the data shares or the
query result is detected.
4) SFC. A data source contributes its data to specific query
classes. That data is used in accordance with those query
classes’ [Q,D, te] triples.

Next, we describe a strawman design (S1) for core SDP
functionality, which attains confidentiality, integrity, and SFC
in a weak threat model. In §3.2, we refine this strawman to our
full construction (S2), which satisfies the desired strong threat
model even though all parties execute in the same datacenter.
In §4, we show how to exploit this colocation to achieve the
remaining property, scalability.

3.1 Strawman (S1): Server-aided MPC
Our first strawman, S1, implements the API (Figure 2) by
combining secret sharing and n-party MPC (but not TEEs,
which we add in § 3.2). Specifically, n independent parties
jointly hold shares of the secret key, MSK[Q,D, te]. S1 attains
confidentiality, integrity, and SFC, but in a weak threat model
that assumes that parties have independent roots of trust de-
spite being co-located in the same datacenter.
Components. To contribute its data, a source uses a n-of-n
authenticated secret-sharing scheme (the cleartext cannot be
recovered unless all n shares are available); then, it entrusts
each data share to a different one of n parties by encrypting
the share with the respective party’s public key. To execute
a query, the parties decrypt their shares of data locally, and
run n-party MPC on their shares to reconstruct the uploaded

plaintexts m1, . . . ,mk and compute the query result, which is
provided to the analyst. The chosen MPC scheme must be
actively secure with t-of-n static compromise: no party learns
anything about m1, . . . ,mk as long as at least n− t parties
are honest. Furthermore, the chosen MPC scheme is data
oblivious, i.e., without any control flow. A simple way to
attain data obliviousness is to use circuit-based MPC.
Implementation. Next, we sketch how S1 implements the
n-party API shown in Figure 2, which can be used after the n
parties are initialized.
Setup: Each party executes this function locally, produces a
standard asymmetric public-private key pair, keeps its private
key locally alongside Q, D and te, and publishes the public key.
MPK and MSK denote n-element vectors (one element for
each party/share) of the public and private keys, respectively.
Contribute: A data source runs this function locally, secret-
shares its data m into n shares with an authenticated secret-
sharing scheme, and encrypts each share with the correspond-
ing party’s public key in the vector MPK[Q,D, te]. C is the
vector of the encrypted shares.
Query: The analyst d calls this function separately on each
party, authenticates itself as d, and provides the desired query
q along with the party’s encrypted shares of the vectors
C1, . . . ,Ck. If each party can authenticate d, finds that d ∈ D,
q ∈Q and its local time is less than te, then the parties decrypt
their respective encrypted shares locally and run MPC. The
MPC computation first checks the authenticity of the shares
(via the authenticated secret-sharing scheme), and then com-
putes the query result (which is ⊥ if any check fails). This
result is encrypted for the analyst and signed by a private key
that exists only in shared form.
Properties. S1 has the desired confidentiality, integrity, and
SFC properties assuming that at least n− t parties are hon-
est. Briefly, confidentiality results from source secret-sharing
plus MPC; integrity from MACs plus malicious-mode MPC;
and SFC from TEEs plus attestation. S1 satisfies our threat
model in theory. In practice, realizing the n− t honest-party
assumption of MPC requires the parties to have independent
roots of trust (for compromise), i.e, their compromisability

USENIX Association 34th USENIX Security Symposium 571

should not be correlated. This independence is questionable
when parties are colocated in the same datacenter without an
additional mechanism to separate their roots of trust. Since we
want colocation for scalability, we introduce such a separation
mechanism on top of S1 in our next construction (S2).

3.2 Full construction (S2): S1 + TEEs

Our full construction, S2, extends S1 by isolating the (colo-
cated) parties from each other using diverse TEEs.

Components. S2 executes each of the n parties inside a TEE
of a different, independent design and implementation. The
code of each party is verified to be correct and the correspond-
ing initial measurement of each party’s TEE is attested.

Implementation. During initialization, the TEEs for each of
the n parties are started and attested. All subsequent commu-
nication among and with the TEEs occurs via secure channels
tied to the attestation. The API functions from S1 execute in
TEEs. In the API call Contribute, the user encrypts its data
shares only if the TEEs have been correctly attested.

Properties. Like S1, S2 provides the desired properties of
confidentiality, integrity, and SFC within our threat model.
However, S2 goes beyond S1, where colocation of the n par-
ties correlates the parties’ compromisability: in S2, the n at-
tested TEEs provide independent roots of trust for the parties
even when the parties are colocated in the same datacenter.

3.3 SDP construction details

Next, we describe the SDP construction, which is based on
S2, in more detail.

General setting. The n parties execute in different, indepen-
dent TEE implementations. Each party consists of a single
provisioning service (PS) and one or more secure data proces-
sors (SDPs). Each PS acts on behalf of its party, attesting and
provisioning the SDPs in its pipeline with the key necessary
to decrypt data shares.

SDPs are the components that perform MPC: each party’s
SDPs collectively form one party in the MPC protocol. A
corresponding set of SDPs (one from each party) handles
one query class [Q,D, te], but the same query class may be
handled by several sets of SDPs (for scaling).

Each party’s PS holds information about defined query
classes. For each class [Q,D, te], this information consists of
the measurement hashes of the TEEs (one per TEE type/-
party) that jointly implement Q in MPC, the public keys of
the authorized analysts in D, the data expiration time te, and
the public keys of the SDPs that implement that query class.

PSs and SDPs can be safely shut down and re-started from
their sealed state [63] without re-attestation, and the sealed
state can be replicated for persistence. We discuss database
rollback prevention in §4.2.

System initialization. Each party instantiates its PS; then,
each PS generates its party’s private-public key pair.

API call Setup(1κ,Q,D, te): A new query class can be cre-
ated by interested analysts using the Setup call. Each party
spawns a fresh SDP for the query class, and configures it with
the class parameters [Q,D, te].

The SDP is remotely attested by its PS and provisioned
with cryptographic keys, including the SDP’s secret key to
decrypt its data shares (in the sense of standard asymmetric
cryptography). Each PS stores the query class [Q,D, te] and
the public keys of the n SDPs, and advertises them publicly.
The secret and public keys of the SDPs are, respectively, the
vectors MSK[Q,D, te] and MPK[Q,D, te] of the API.

API call Contribute(MPK[Q,D, te],m): Data sources con-
tact the PSs to retrieve information about the available query
classes [Q,D, te], as well as the public keys of the SDP sets
that implement them. Before contributing data to a query class
[Q,D, te], a data source verifies that the SDPs implementing
that class have been attested.

Data sources share data using an authenticated secret-
sharing scheme, which allows SDPs to verify that the shares
have not been modified before they use the sharing (input in-
tegrity). The data source uses the authenticated secret-sharing
scheme to create n shares of its data, and encrypts each share
with the public key of a different member of the set of SDPs.
(This set of encrypted shares is denoted C in the Contribute
API.) The data source then provides each share to its respec-
tive SDP. Secret sharing ensures data confidentiality, while
subsequently encrypting the shares prevents data misuse:
Only correctly attested TEEs (i.e., attested to implement the
specific [Q,D, te] and thus provisioned with the corresponding
decryption keys) can decrypt the shares.

API call Query(q,d,C1, . . . ,CK): To execute a query q over
encrypted shares C1, . . . ,Ck of a query class [Q,D, te], an an-
alyst d sends the set of SDPs of that class their shares from
C1, . . . ,Ck with the query q. The SDPs independently authen-
ticate d, and check that q ∈ Q, d ∈ D and current time < te.
Then they decrypt their shares locally and run MPC to verify
the shares, to reconstruct the plaintexts m1, . . . ,mk from the
shares, and to compute q(m1, . . . ,mk), which is revealed only
to the analyst.

4 CoVault scalable analytics

A key property of the SDP described in the previous section
is that the MPC parties can execute securely within the same
datacenter. In this section, we show how CoVault exploits
this colocation and uses the enormous network and compute
resources of a datacenter to execute many subqueries in par-
allel, thereby scaling out query processing. Additionally, we
describe how CoVault manages its database and efficiently
supports oblivious random data accesses.

572 34th USENIX Security Symposium USENIX Association

4.1 Executing queries at scale
The unit of querying in CoVault is a standard SQL filter-
groupby-aggregate (FGA) query of the form:
SELECT agg([DISTINCT] col1), ...

FROM T WHERE condition GROUP BY col2

where agg is an aggregation operator like SUM or COUNT.
The query can be executed in three steps: (i) select (filter) the
rows of table T that satisfy condition, (ii) group the selected
rows by col2, and (iii) compute the required aggregate for
each group.

Problem #1: Horizontal scaling. The colocation of MPC
parties allows CoVault to leverage core parallelism and the ag-
gregate bandwidth available in a datacenter to scale-out query
processing. For this, CoVault draws inspiration from MapRe-
duce [43]. CoVault converts FGA queries into a set of map
and reduce tasks, and distributes them across the datacenter
for execution by sets of SDPs using MPC. Since FGA queries
tend to be highly data-parallel, most map and reduce tasks are
data-independent, and can be executed in parallel using the
cores, servers, and bandwidth available in a datacenter.

CoVault’s map and reduce tasks for steps (i)–(iii) of a
FGA query are built using basic oblivious algorithms: bitonic
sort [15], bitonic merge of sorted lists [15], and a butterfly
circuit for list compaction (§3 in [54]) that moves marked
records to the end of a list. Each of these algorithms is slower
than the fastest non-oblivious algorithm for the same task by
a factor of O(log(N)), where N is the input size.

Oblivious query execution additionally requires that the
volume of intermediate results exchanged among map and re-
duce tasks not reveal private information. To this end, the data
exchanged between a pair of tasks is padded to its maximum
possible size, which is typically a function of the maximum
number of groups in the query’s output. Compaction is crucial
to minimizing this size and thus to minimizing the bandwidth
needed in the reduce phase.

Problem #2: Integrity of intermediate results. When inter-
mediate data is passed between map-reduce or reduce-reduce
tasks, integrity of the data must be enforced. While we could
reuse the authenticated secret-sharing scheme to enforce input
integrity, MAC computation in MPC is expensive. Depending
on the MPC protocol used, it may be possible instead to ex-
change data using an in-protocol representation. The CoVault
prototype uses this optimization as described in §5.

4.2 CoVault Database
So far, we have not discussed how the encrypted data shares,
denoted C in §3, are managed in our prototype. Once a data
source has obtained its encrypted data shares C by locally
executing the Contribute API, it forwards each share to the
corresponding SDP, which stores the share in a per-party
untrusted database (DB). In the Query API call, the encrypted
data shares C1, . . . ,Ck that the query runs on are retrieved

directly from these DBs; they are not provided by the querying
analyst. Shares stored in the untrusted DBs are encrypted and
MAC’ed with keys known only inside the SDPs’ TEEs. The
organization of these databases and whether any processing
on source data is performed by the SDPs during data ingress
depend on the DB schema and the queries in the query class.
We sketch an example scenario in § 6.3. In general, data
shares may be stored in tables with both row- and column-
level MACs to enable efficient integrity checks when the data
is read during query processing.

Next, we discuss database access challenges and solutions.

Problem #3: Efficient oblivious DB random access. As
explained above, the SDPs read the inputs C1, . . . ,Ck from
their DBs to execute queries. For the most part, DB tables
are read sequentially in their entirety. However, some queries
need random access to specific rows for efficiency. The pat-
tern of such accesses can leak secrets if the locations of the
accessed rows depend on secrets read earlier from the DB
(secret-dependent accesses).

In principle, one could implement ORAM [53] within MPC
to solve this problem; however, even state-of-the-art imple-
mentations [40, 46, 57, 80] either do not match CoVault’s re-
quirements and threat model or are orders of magnitude slower
than our solution, described below. The properties of private
information retrieval (PIR) are closer to our requirements, but
PIR still has substantial overhead [34, 37, 85, 104]. Another
option is to randomly permute secret-shared tables [27,58,75],
but existing techniques either have substantial overhead or
assume semi-honest adversaries.

Oblivious data retrieval (ODR). CoVault instead relies on
a custom malicious-secure, oblivious data retrieval (ODR)
scheme, which achieves constant-time lookup at the expense
of off-line work to randomly shuffle tables. (DB accesses
where the accessed locations are independent of secret data
need not use ODR.) Our ODR scheme combines preprocess-
ing inside MPC with pseudorandom table shuffling outside
MPC for efficiency. The scheme works as follows. For sim-
plicity, we describe the protocol for the case of n = 2 (2PC).
However, the scheme generalizes to any number of parties.

Preprocessing. During data ingress, which runs in MPC, we
preprocess every table that requires ODR access. We encrypt-
then-MAC (EtM) each row, and separately EtM the row’s
primary key. The secrets used to generate the EtMs can be
recovered in MPC only.

Shuffling. A preprocessed table is shuffled by a pair of pro-
cesses, P1 and P2, of different parties. This shuffling is done
outside MPC for efficiency. First, P1 locally shuffles the table
by obliviously sorting rows, ordering them by a keyed crypto-
graphic hash over the primary key EtMs. Oblivious sorting
also creates a second layer of encryption over every row. The
keys used for hashing and encryption are freshly chosen by P1.
Next, P2 re-shuffles the already shuffled table, by re-sorting
the table along a keyed hash over P1’s hashes using a fresh

USENIX Association 34th USENIX Security Symposium 573

key. This doubly-shuffled table is stored in the DB indexed
by P2’s hashes.

Row lookup. P1 and P2 input the secret keys they picked during
shuffling into 2PC. To access a row with a given primary key,
2PC computes the position of the row in the shuffled table in
constant time by applying the EtM and the two keyed hashes
to the primary key. The position is revealed to both parties,
which fetch the row from the shuffled table. Back in 2PC,
the MAC of the row’s EtM is checked, the row is decrypted
and the primary key stored within the row is compared to the
lookup key for equality.

Properties. The ODR scheme obfuscates the dependence of
DB row locations on primary keys, and protects the integrity
and confidentiality of row contents from a malicious party.
First, recovering the order of rows in the doubly-shuffled ta-
ble requires keys used for shuffling by both parties, which
only 2PC has. Second, neither party learns any row individu-
ally since all data is encrypted by preprocessing using secret-
shared keys. Third, any attempt to tamper with a row’s data
or swap rows is detected by the checks on the fetched row.

Unlike general, less efficient PIR techniques, our ODR
scheme does not hide whether two lookups to the same shuf-
fled table access the same row. To avoid frequency attacks,
CoVault prevents such accesses. First, it prefers query plans
that access each item only once (such plans are preferred
for efficiency reasons as well). If such a plan does not exist,
CoVault caches already fetched items inside MPC in order
to eliminate multiple database accesses to the same item. If
this is not possible, a different shuffle is used for each access.
Table shuffles can be precomputed, so that freshly shuffled
tables are readily available to queries. (Preprocessing happens
once per table.)

Optimization: Public index. We can avoid the ODR over-
head for queries that perform random access only on public
attributes by creating public indexes. Public indexes can also
speed up queries that join data on a public attribute (an ex-
ample of this join optimization is in the TR [102], §D.2).
Otherwise, data-oblivious joins can be very expensive [110],
even more so in MPC. In §6.3, we show illustrative queries
that exploit public indexes.

Problem #4: Detecting database roll-back. A malicious
platform operator or a corrupt party may roll back the database
to an earlier version. In general, rollback can be detected by
known techniques [10, 79, 88], such as a secure, persistent,
monotonic counter within a TEE or TPM, or a distributed
rollback detector. If a distributed rollback detector is used
in CoVault, its replicas should be in different datacenters to
prevent a correlated rollback. This does not impact query
performance, because the detector service is consulted only
during reboot of the MPC TEEs and database modifications.

In specific cases, such as the epidemic analytics scenario
of §6.3, we can instead exploit the fact that the database is
append-only and continuously indexed. In this case, rollbacks

other than truncation are trivially detectable. To detect trunca-
tion, CoVault additionally warns the querier whenever records
within the index range specified in the query are missing.

Problem #5: Data expiration. CoVault must not return a
query result if its execution finishes after the query class’s ex-
piration time. To tolerate a malicious platform operator who
may manipulate the passage of time experienced by a TEE,
the TEEs rely on external third-party timestamping services.
Once a query execution finishes, a TEE requests a timestamp-
ing service to sign the hash of the query and its result. The
TEEs deliver the result to the analyst only if the timestamp
precedes the expiration time. Multiple timestamping services
are contacted to distribute trust.

4.3 Query expressiveness and limitations
In principle, CoVault can run all FGA queries. Most FGA
queries also execute efficiently, but there are exceptions. First,
if a tight upper bound on the number of groups in a reducer’s
output cannot be determined, then efficiency is lost due to
excessive padding of the reducer’s output data. Second, a
query loses efficiency if the maximum number of times the
same record is accessed via ODR cannot be bounded tightly.

Finally, joins are inherently expensive in MPC. Prior sys-
tems implementing joins in MPC either assume a weaker
threat model (e.g., [103]) or they are limited to modest
datasets (e.g., [90]). We perform a simple join on small
datasets (user uploads from a certain space-time region) dur-
ing ingress processing (§D in the TR [102]). In general, it is
best to do joins during ingress processing if needed and pro-
duce materialised views, which can be queried subsequently
without joins.

5 CoVault prototype implementation

Next, we detail a specific implementation of the CoVault core
API (Figure 2) for n = 2 parties, of which t = 1 parties may
be malicious. This prototype implementation uses garbled
circuits (GCs) and the DualEx protocol [60] for 2PC. We
emphasize that the constructions described here generalize
to any number of parties and any MPC protocol (where the
adversarial model of CoVault depends on the underlying MPC
protocol’s threat model, be it semi-honest, malicious with a
1-bit leak, or fully malicious).

Choice of MPC protocol and number of parties. The choice
of MPC protocol and number of parties in our prototype is
pragmatic. Using two parties aligns with the current avail-
ability of two different hardware TEE types in public Clouds
(Intel TDX and ADM SEV-SNP). Even with only two par-
ties, an adversary must compromise both TEE types, which
presents a formidable challenge. The choice of GCs with
DualEx provides a very strong threat model (active compro-
mise of one TEE with a 1-bit leak) at a resource cost that

574 34th USENIX Security Symposium USENIX Association

is only slightly more than twice that of a semi-honest 2PC
protocol, and a similar runtime.

Choosing instead a semi-honest 2PC protocol is possible
but would imply a total loss of security if one TEE is actively
compromised. Choosing a fully malicious 2PC protocol is
also possible but would introduce substantially higher latency
for each map and reduce task. However, CoVault would still
scale out up to the available resources (cores and network
bandwidth) in the datacenter.
DualEx. DualEx [60] is an actively secure 2PC protocol that
is nearly as fast as passively-secure protocols and needs only
twice as many cores, but can leak 1 bit of information in the
worst case. DualEx runs two instances of a standard passively-
secure 2PC protocol concurrently on separate core pairs, with
the roles of the two parties, conventionally called generator
and evaluator, reversed. The results of the two runs are com-
pared for equality using any actively-secure 2PC protocol. If
the results mismatch, query execution is suspended pending a
manual inspection of the system.

In principle, the leaked bit can be the result of any boolean
function of the attacker’s choosing, evaluated on the data con-
sumed by a legitimate, approved query. However, an adver-
sary faces many constraints for a practical attack, and recent
work [70] has shown how to efficiently limit both the type
of boolean function, and the probability of an actual leak, en-
abling a continuum of practical security-efficiency tradeoffs.
If an application cannot tolerate the possibility of a 1-bit leak,
CoVault can be configured with a full malicious-secure MPC
protocol; we estimate the cost of this choice in §6.
Adapting DualEx to CoVault’s needs. Like most 2PC pro-
tocols, DualEx reveals the computation’s result to both par-
ties. However, we require a protocol that reveals the result
only to the analyst, not to the two parties. To address this
challenge, we combine DualEx with an authenticated secret-
sharing scheme (which we call MtS, see below): We run
DualEx to first compute the result r = q(m1, . . . ,mk) and then
secret share r two ways using MtS, producing two authen-
ticated shares r1 and r2. DualEx outputs one share to each
party; each party forwards its share to the analyst, who verifies
the shares and reconstructs the query result.
Authenticated secret sharing. The authenticated secret-
sharing scheme used in our prototype relies on a MAC fol-
lowed by secret sharing, so we call it MAC-then-Share (MtS).1

The scheme assumes a MAC function M that provides key-
and message-non-malleability as well as message privacy.
To split data m into two shares, the data holder generates a
random key k, computes a tag t←Mk(m), then generates two
random strings rk,rm, and uses (standard) xor-secret-sharing
to generate shares k1,k2 of the key k and shares m1,m2 of the
data m:

k1← k⊕ rk, k2← rk, m1← m⊕ rm, m2← rm

1CoVault’s design is not tied to this particular authenticated secret-sharing
scheme. We could also have used other schemes [38, 47].

The two MtS authenticated shares of the data are (m1,k1, t)
and (m2,k2, t). Each share looks random, but parties pos-
sessing the shares can verify them jointly by checking that
Mk1⊕k2(m1⊕m2) = t. This verification fails if either share
has been modified.

Our prototype instantiates MtS with M = KMAC256 [68].
We also tested field-based linear information-theoretic
MACs [24, 71] for M, but we empirically found them to be
slower than KMAC256 in our GC-based setting.

In-circuit representation of intermediate results. When
passing intermediate results between successive GCs (e.g.,
between a map and a reduce circuit), the CoVault prototype
treats successive GCs as a single, unified circuit and passes
intermediate data in its native in-circuit representation, specif-
ically in garbled form. While this choice increases the size of
data transmitted or stored by a factor of 256x in our prototype
(128x for the garbled encoding of bits and 2x for DualEx), we
empirically found it faster than creating and verifying MACs,
which would otherwise be necessary to ensure integrity when
transmitting intermediate results. Our design minimizes in-
2PC MAC usage in the common case: we verify one MAC
for every batch of data uploaded by a data source, create
per-column MACs when storing data in the database after
data ingress, verify these MACs when the data is read for a
query, and create one MAC for every query’s output. Addi-
tional MAC and hash operations are needed for ODR-based
database accesses, as detailed in §4.2.

Security analysis and proofs. Our assumption (§2.2) that
at least t = 1 TEE implementation remains uncompromised
and that data sources and analysts interact only with attested
SDPs together imply that at least one SDP per query class is
fully honest. As a result, all GCs run securely. To establish
end-to-end security, it remains to show that our MtS scheme
and the adapted DualEx protocol guarantee confidentiality
and integrity, which we do in the TR [102], §F.

6 Evaluation

Next, we present an experimental evaluation of CoVault to
answer the following high-level questions: What is the cost
of basic query primitives and the shuffling required for ODR?
How does query latency scale with the number of cores for a
realistic set of epidemic analytics queries at scale? How does
CoVault’s performance and scaling compare to related work
with a comparable threat model?

6.1 Prototype and experimental setup
We implement CoVault on top of the EMP-toolkit [105],
a state-of-the-art framework for garbled circuits in C/C++.
First, we implement DualEx2 and our extension using emp-

2The implementation of the original protocol [60] is not publicly available,
but reportedly based on a different Java framework [2].

USENIX Association 34th USENIX Security Symposium 575

sh2pc for the semi-honest executions, and emp-ag2pc for the
actively-secure result equality check. We use emp-ag2pc also
for the experiments with AGMPC (AG2PC refers to AGMPC
with 2 parties). Then, we implement circuits for SHA3-256
and AES-128-CTR (which we integrate in emp-tool), and the
MtS of §5 (based on KMAC-256, on top of a pre-existing cir-
cuit for Keccak). Using these building blocks, we implement
our ODR scheme (§4.2), map-reduce primitives (e.g., filter,
group-by, aggregate), microbenchmarks, and queries. We use
Redis (6.0.16, non-persistent mode) as the DB, but during
data-dependent query execution, shuffled views are held in
memory on SDPs rather than in Redis to enable efficient
re-shuffling.

We deploy the prototype on Google Cloud Compute Engine
(GCE), which offers VMs with both AMD SEV-SNP and Intel
TDX TEE hardware support, the latter available through a
restricted private preview. Unless otherwise stated, we use the
following instance types: n2d-standard-8 with Confidential
Computing (AMD EPYC 7B13 @ 2.44GHz, 8vCPU, 4 core,
32GB RAM) and c3-standard-8 under GCE’s TDX Private
Preview (Intel Sapphire Rapids @ 2.7 GHz, 8vCPU, 4 core,
32GB RAM). All machines run Ubuntu 22.04 LTS, have
a 100 GB balanced persistent disk, are located in the same
us-central1-a zone, and use Google gVNIC (up to 16Gbps).

6.2 Microbenchmarks
We first evaluate our choice of MPC protocol by comparing
the performance of DualEx with both a semi-honest and a
fully malicious protocol. Then, we report the costs of ba-
sic oblivious algorithms (§ 4.1), mappers and reducers for
a generic FGA query (§ 4.1), and shuffling (§ 4.2). These
primitive costs provide a basis for estimating the total cost of
arbitrary FGA queries, beyond the specific epidemic analytics
queries we evaluate in §6.3.

GC vs. DualEx vs. AGMPC. To illustrate the performance
tradeoff in the choice of a 2PC protocol, we compare DualEx
to two alternatives: (i) a semi-honest 2PC protocol using GCs,
which also serves as a building block for DualEx; and (ii)
AGMPC, a state-of-the-art fully malicious-secure boolean
MPC protocol [107], used in systems like Senate [90]. While
AGMPC generally assumes t = n− 1, we compare against
AGMPC with 2 parties (AG2PC), where t = 1 as in DualEx.

We sort (the most expensive query primitive) 10,000 32-bit
inputs using two parties. We evaluate AG2PC, semi-honest
GCs (a single execution), and DualEx (two symmetric, sequen-
tial runs plus the equality check), running each protocol on
an Intel TDX and a AMD-SEV VM corresponding to the two
parties, with one core per party. In addition, we run DualEx
with two cores per party, thereby exploiting the natural concur-
rency in this protocol by executing the two semi-honest GC
concurrent runs in parallel. The results are shown in Figure 3.

With the same number of cores (one per party), DualEx
runs twice as long as a semi-honest GC execution, as expected,

and DualEx is 11.36x faster than the fully malicious-secure
AG2PC. When given extra cores to exploit its inherent paral-
lelism, DualEx is only 8% slower than the semi-honest GCs.
These results suggest that DualEx is a compelling choice in
scenarios where a 1-bit leak is acceptable.

Figure 3: Cost breakdown. Par and Seq indicate parallel and
sequential execution of the two GC computations in DualEx.
Sh is the semi-honest 2PC execution in TEEs.

Cost breakdown. Figure 3 shows the latency contributions
of the individual components in DualEx. The purple and blue
parts show the contributions of the two parallel GC executions
required for DualEx, one where the Intel CPU plays the role
of the generator, and one with the AMD CPU as the generator.
(The two latencies differ slightly because the load on the
generator is higher, and the Intel CPU is slightly faster; the
slower execution determines the total latency.) The green
part of the bars indicates the additional latency incurred by
executing the two parties in TEEs (SEV-SNP and TDX), along
with the result comparison overhead, which is negligible.

Differentially private queries require the addition of appro-
priate noise to the final result of a query. The cost of adding
such noise is negligible, on the order of ms.

Query primitives. Figure 4a shows the execution time for the
basic oblivious query primitives from §4.1—linear scans on
32-bit and 256-bit records, sorting, merging two sorted lists,
and compaction on 32-bit records—as a function of the list
length (input size). Each reported number is an average of
5000 measurements, with std. dev. shown as error bars. The
trends are as expected: The cost of linear scans grows linearly

Figure 4: 2PC processing time vs. input size for basic oblivi-
ous algorithms and mappers/reducers.

576 34th USENIX Security Symposium USENIX Association

with the input size, sorting, sorted merge, and compaction
exhibit slightly super-linear growth. Sorting is significantly
more expensive than compaction, which is why our reduce
trees sort only in the first stage and merge-compact in subse-
quent stages.
Oblivious MapReduce. Figure 4b shows the average ex-
ecution time of typical mappers and reducers on a single
core pair with DualEx in TEEs. The specific operations are
those of query q2 in Figure 5. The complexities of a map-
per, 1st-stage reducer, and subsequent-stage reducer are O(c),
O(c(log(c))2), and O(d log(d)), respectively, where c is the
input size and d is the maximum width of a reducer’s re-
sult. The 1st-stage reducers are more expensive due to the
additional sort operation. The results align with expectations:
Map costs are linear in the input size, while reduce costs are
slightly super-linear, with the 1st-stage reduction being the
most expensive.
Shuffling. Each shuffle requires two sequential oblivious sorts
in TEEs of different types, outside 2PC. Shuffling a view of
600M records takes 58min on a single core pair.3 Shuffling
one-tenth the number, 60M records, takes 4.6min. The vari-
ances are negligible. The scaling is super-linear since oblivi-
ous sort runs in O(N(log(N))2) time even outside 2PC.

A shuffle is used only once for a query that requires ODR,
but shuffles can be precomputed in parallel. Since a shuffle
sorts on one core at a time, a single core pair can produce two
different shuffles of 600M records in under 1h—a conserva-
tive upper bound on the pairwise encounters generated by a
country of 80M people in 1h in our epidemic analytics sce-
nario (§6.3). Thus, for a country of this size, we can prepare
shuffles for q queries using q/2 core pairs continuously.
Bandwidth. Garbled circuits are streamed from the generator
to the evaluator, along with the garbled encoding of the evalua-
tor’s inputs. During a series of sort and linear scan operations,
the average bandwidth from the generator to the evaluator,
measured using NetHogs [3], is ∼2.8Gbps. The bandwidth
from the evaluator to the generator is negligible in compari-
son. With DualEx, the average bandwidth is 2.8Gbps in each
direction. We use 4 active cores per machine for a bandwidth
of 5.6Gbps in each direction, which the GCE gVNIC can
support. For comparison, the average bandwidth requirement
when using AG2PC is just under 2Gbps in each direction.

6.3 End-to-end scenario: Epidemic analytics
We evaluate CoVault at scale using epidemic analytics as an
example scenario. We use DualEx as the underlying 2PC
protocol throughout, unless stated otherwise.

Since CoVault uses oblivious algorithms, the actual data
values are irrelevant for performance: what matters is the

3600M records exceed the 32GB RAM in our standard VM configuration.
So, for the experiment with 600M records, we increased the RAM size to
88GB in the SNP VM, and we used a c3-standard-22 VM instance with
88GB RAM as the TDX VM.

Figure 5: Schema and queries used in epidemic analytics. The
selections on the public attributes space-time-region and
epoch are done outside 2PC using the public indexes of TE
and TP. R is a set of space-time-regions.

TE space-time-region eid did1 did2 . . .

TP epoch did1, time did2 duration prev next . . .
(q1) Histogram of #encounters, in space-time regions R,

of devices in set A
SELECT HISTO(COUNT(*)) FROM TE

WHERE did1∈A AND space-time-region∈R
(q2) Histogram of #unique devices met, in space-time

regions R, by each device in set A
SELECT HISTO(COUNT(DISTINCT(did2))) FROM TE

WHERE did1∈A AND space-time-region∈R
(q3) Count #devices in set B that encountered a device

in set A in the time interval [start,end]
WITH TT AS

(SELECT * FROM TP

WHERE start<epoch<end)

SELECT COUNT(DISTINCT(did2)) FROM TT

WHERE did1∈A AND did2∈B
AND start<time<end

database schema, the number of records, and the query struc-
ture. Hence, our evaluation generalizes to any scenario with
similar data sizes and sequence of FGA operations.

For our epidemic analytics scenario, we use synthetic lo-
cation and Bluetooth Low Energy (BLE) radio encounter
data—which would normally be collected via smartphones—
as detailed in the TR [102] (§C, D.2). Ingress processing
produces two materialized views, TE and TP, whose schemas
are shown in Figure 5. Each view includes a public, coarse-
grained index, marked with italics font. TE stores pairwise
encounters, containing an encounter ID (eid) and the anony-
mous IDs of the two devices (did1, did2). The public index is
keyed with a coarse-grained space-time region.

The second view, TP, contains encounters privately indexed
by individual device IDs and the times of the encounter re-
ports (did1, time). Each record includes pointers to previous
and next encounters, enabling timeline traversal for a given
device. The public index on TP is a coarse-grained epoch
(∼1h) during which an encounter occurred. TP is accessed
via the private index in data-dependent queries; thus, TP is
shuffled as required by the ODR scheme (§4.2).

Our evaluation uses the queries q1–q3 in Figure 5, devel-
oped in consultation with an epidemiologist. These queries
can help assess the impact of contact restrictions, such as
the closure of large events, on the frequency of contacts
among people during epidemics. Query q3 can help deter-
mine whether two epidemic outbreaks (represented by device
sets A and B) are directly connected by an encounter. A related
query, discussed in the TR [102] (§D.4), extends q3 to indirect
encounters between A and B via a third device.

We measured end-to-end query latency for the queries q1–
q3 as a function of input size and core count.
Queries q1 and q2. Both q1 and q2 run on the view TE .

USENIX Association 34th USENIX Security Symposium 577

Figure 6: Query latency vs. total number of core pairs
(DualEx) for the FGA queries (q1) and (q2) from Figure 5.
The measurements are the average of 50 runs, with std. dev.
shown as error bars. In (b), we additionally show the perfor-
mance predicted by our performance model (described below).

The queries fetch only the records in the space-time region
R, using the public index of TE , which significantly reduces
the amount of data processed in MPC and hence the query
latency. In our synthetic database, the space-time region R
contains 28M encounter records, representing a conservative
upper bound on encounters generated in a space-time region
with 10k data sources reporting 200 encs/day over 14 days.
We process these records in 10k-sized shards, empirically
minimizing latency. In both queries, we iterate over devices in
the given set A. For each device a in A we issue a FGA query.
For q1, this FGA query counts the encounters of device a in R.
For q2, the FGA query counts the number of unique devices
that a met in R. These FGA queries can execute in parallel for
all devices in A.

Figure 6a shows the latency of q1 as a function of available
core pairs (currently limited to 22 in the GCE TDX private
preview). Mappers filter input encounters to those involving
the specific user a, while reducers aggregate encounter counts.
The results show that latency scales almost inversely with the
number of core pairs available, showing near-linear horizontal
scaling.

Figure 6b shows the latency of q2. The map phase is un-
changed, but reducers must merge and deduplicate lists of
encountered devices. Again, query latency varies almost in-
versely with the number of cores, but is higher than for q1,
since 1st-stage reducers perform more work in q2.
Query q3. Query q3 runs on the view TP, and computes the
number of devices in set B that directly encountered a device
in set A within the time interval [start,end]. A naïve 2PC
implementation would require a linear scan of all encounter
records in this interval to find those between two peers from
sets A and B. Based on our earlier estimate, for a table of 80M
people and a 14-day period, this would involve loading and
filtering 165.9B records in 2PC.

Instead, q3 leverages TP to pre-select relevant epochs in
[start,end] outside 2PC. For each relevant epoch e and
device b in B, the query traverses b’s sequence of encounters
by dereferencing prev pointers obliviously using ODR, start-

ing from b’s latest encounter. Dummy lookups are inserted
as needed to hide the actual number of encounters b has in
e. For each such encounter, the query checks if b’s time falls
in [start,end] and if b’s peer is in A, using an in-circuit
Bloom filter initialized with A. If so, this b encountered a de-
vice in A. The query repeats this traversal for every b in B and
all relevant epochs, thus counting the number of devices in B
that encountered some device in A.

For A and B of size 10 each and a 14-day period, this ap-
proach reduces the number of records processed in 2PC by
five orders of magnitude, down to ~100K. The total query
latency on 2 core pairs is 2.44 hours, assuming shuffled views
(for ODR) for each of the 336 1h epochs are precomputed.
Preparing two shuffled views of an epoch took less than one
hour on a single core pair (§6.2), and shuffled views can be
precomputed upfront and in parallel whenever idle cores are
available. Given q3’s modest latency using 2 core pairs, we
did not parallelize its implementation. However, q3 is highly
data-parallel. For instance, “checking whether a given de-
vice in B intersects A during a 1h epoch” can be treated as
a sequential execution unit, which can be run in parallel on
separate cores. This unit takes ∼2.6s in our prototype. The
time required to add up the final counts is insignificant by
comparison. The parallel sub-computations share one ODR
view per epoch, as they access disjoint sets of records.

6.3.1 Estimating query latency at scale

Performance model. So far, we have presented measured
results from a modest-sized deployment in GCE with up to
22 core pairs. Due to restrictions in the GCE TDX private
preview, additional TDX cores are unavailable to us; at any
rate, larger-scale experiments with thousand of cores would
also exceed our monetary budget. Instead, we developed a
performance model based on detailed measurements of in-
dividual mappers, reducers, and query primitives to be able
to extrapolate the performance of large deployments. This
model accurately predicts our measured query performance
for small deployments, as shown in Figure 6(b). Details of
the model are in the TR [102], §E.

Scaling to many cores. Using our model, we extrapolate
the number of core pairs needed to achieve a target query
latency for a given number of input records. For example,
if the input was 10x larger (280M records), answering q2’s
basic query in 10min would need 272 core pairs (e.g., 34
16-CPU machines). Given our measured bandwidth for 2PC
(§ 6.2), executing this query with 272 core pairs requires
a total bisection bandwidth of ∼200Gbps between pairs of
servers hosting the parties. While a datacenter can easily
meet this demand among servers in the same rack, a geo-
distributed MPC system would require similar bandwidth
across datacenters! This shows that colocation is a key to
scale-out in MPC-based computations.

578 34th USENIX Security Symposium USENIX Association

Scaling to a country. To perform epidemic analytics for
an entire country with 80M people, our model predicts that
continuously ingesting encounter records (11.85B records/-
day) requires 1,660 core pairs running continuously (see the
TR [102], §D.3). Furthermore, running q2 on 14 days of
records (165.9B total) within 24h requires an additional 1,074
core pairs engaged for those 24h. Looked at differently, a core
pair is required for every∼30,000 citizens at this scale. While
this resource cost is substantial, it remains within the capacity
of even medium-sized datacenters. Moreover, we believe that
the monetary cost is justifiable for high-value analytics like
those relevant for public health.

Performance with fully malicious and semi-honest 2PC.
All reported query results used DualEx as the MPC protocol.
Here, we estimate the performance impact of using AG2PC, a
fully malicious-secure protocol, and GCs, a semi-honest 2PC
protocol for comparison. To do so, we measured the perfor-
mance of mappers, reducers, and query primitives under these
protocols and used our performance model to extrapolate
query performance at scale.

With AG2PC, executing q2 as described above on 14 days
of records within 24h requires an estimated 13,000 core pairs,
over 12x more than with DualEx. With current state-of-the-art
2PC protocols, this is the cost of a fully malicious threat model
that does not admit the 1-bit leak. The bandwidth requirement
per core pair remains below 2Gbps on average, peaking be-
low 6Gbps, well within the capacity of a datacenter even at
this scale (Google reportedly has more than 1Pbps bisection
bandwidth [97]). Thus, CoVault’s colocation of parties allows
it to scale out regardless of the MPC protocol and enables
analytics at scale even in a fully malicious model, provided
sufficient datacenter resources.

For comparison, executing the same q2 query within 24h
using a semi-honest GC protocol is possible with 537 core
pairs (half of the core pairs required for DualEx) since only
one of the two parallel semi-honest GC executions is required.

6.4 CoVault versus existing work
Existing secure analytics platforms with active security fall
into two broad categories. In cooperative analytics platforms
like Senate [90], large data aggregators run distributed MPC
to analyse their collective, distributed data. As a result, the
number of data sources participating in a (sub)query deter-
mines the number of MPC parties, and the MPC parties are
geo-distributed. The overhead of AGMPC, which is used
in Senate, increases super-linearly with the number of par-
ties. Moreover, WAN bandwidth limits Senate’s scalability,
restricting its analytics to small databases.

The Senate prototype is not available; based on published
runtime and network usage results for Senate’s m-Sort circuit
with 16 parties [90, Figs. 5a, 7b], we estimate its average
bandwidth during the execution at 4.8Gbps (480GB/800s).

We can use this result to extrapolate its total average band-
width requirement if one tried to perform parallel subqueries
on a large dataset. To execute our query q2 on 28M records,
Senate would require 1750 (28M/16k) parallel sorts in the
first stage, resulting in a total average bandwidth of 8.4Tbps!
By contrast, in CoVault, the number of MPC parties is inde-
pendent of the number of data sources, and the colocation of
parties enables scale-out up to the available cores and bisec-
tion bandwidth within a single datacenter.

Federated analytics (FA) platforms like Arboretum [78]
analyse data stored on millions of individual user devices,
using a combination of homomorphic encryption, zero-
knowledge proofs, MPC among small committees of user
devices, and a centralized untrusted aggregator. We imple-
mented Arboretum’s top1 query in CoVault. According to
published results, for 215 categories and 109 data sources/in-
puts, this query takes ∼9h with a 1,000-core aggregator in
Arboretum. Using our performance model, we estimate that
250 CoVault SDPs (1,000 cores) running AG2PC (to match
Arboretum’s active security model) would process this query
with a delay in the same order of magnitude.

FA and CoVault differ in qualitative aspects, making the
two approaches suitable for different scenarios. With FA,
query efficiency, results and repeatability depend on the avail-
ability, cooperation, and resource contributions of individual
user devices, as well as WAN network bandwidth and delays.
However, FA does not require trusted, centralized components.
CoVault, in contrast, requires more substantial datacenter re-
sources, but offers repeatable query results and additionally
supports data-dependent and iterative queries.

7 Related work

Even though considerable progress has been made towards
scaling secure analytics platforms and MPC broadly, no sys-
tem scales horizontally to billions of records, while meeting
the security properties of § 1. For example, many existing
systems either provide only passive security [16, 29, 44, 81–
83, 86, 100, 103], or do not fully distribute trust [11, 12, 14, 17,
42, 48, 50, 61, 73, 74, 77, 92, 96, 101, 110], and, thus, satisfy
the security properties only partially. Here, we compare to
closely related work, except federated analytics, which we
covered in §6.4.

Collaborative / cooperative analytics refers to MPC-based
analytics where the parties are also the data sources. SM-
CQL [16] and Conclave [103] are only passively secure, while
Senate [90] provides active security. Cooperative analytics
runs early stages of the computation on subsets of data sources.
However, these systems have no support for data-dependent
queries, and only support running queries as monolithic cryp-
tographic computations, without horizontal scaling to cores
available within each party, which is the primary problem
CoVault addresses.

USENIX Association 34th USENIX Security Symposium 579

Combining MPC and TEEs. The encapsulation of MPC par-
ties in TEEs has been considered in related work for various
purposes but not for scaling MPC horizontally, which is what
CoVault does. Encapsulation in TEEs of different vendors has
been used to bootstrap decentralized trust by enabling stake-
holders to audit the MPC configuration [39] and to recover
keys securely [32].

Encapsulation of MPC parties of the same vendor, or with-
out explicit consideration of TEE heterogeneity, has been
used to obtain active security from passively-secure proto-
cols [72], to offload subcomputations to a single party within
MPC [108], to obtain a protocol for fair multi-party transac-
tions in blockchains without MPC [95], and to improve trust
in code verifiers [98]. Unlike CoVault, these systems cannot
tolerate the failure or compromise of any TEE.

Secret-shared data analytics systems aim to decentralize
trust. Obscure [56] supports aggregation queries on a secret-
shared dataset outsourced by a set of owners; however, it
does not support big data and nested queries. Cryptε [29] and
GraphSC [82] outsource computation to two untrusted non-
colluding servers, but assume only semi-honest adversaries.
Waldo [41] uses secret sharing and honest-majority 3PC but
focuses on outsourced analytics of time-series data from a
single source. Unlike CoVault, all three systems rely on strong
assumptions about the absence of correlated attacks.

TEEs without MPC [11, 14, 17, 50, 61, 73, 74, 77, 92, 96, 101]
protect data at rest and in use by decrypting data only inside a
TEE. This idea has been combined with oblivious algorithms
to mitigate side-channel leaks [12, 42, 44, 48, 83, 84, 100, 110].
However, unlike CoVault, these systems do not distribute
trust among independent parties. They address orthogonal
problems, e.g., the design of efficient oblivious algorithms or
TEE-related protocols.

Homomorphic encryption (HE) is an alternative to classic
MPC. Full HE is prohibitively expensive [99]. Partial HE
(PHE) restricts query expressiveness significantly, and works
efficiently only in weak threat models. Seabed [86] works in
a semi-honest setting. TimeCrypt [21] and Zeph [22] allow
data sources to specify access control preferences (similar to
SFC); however, they specifically target time-series data with a
restricted set of operations (additions but not multiplications),
and Zeph operates in a semi-honest threat model.

Automatic optimization of MPC has been considered in
Arboretum and several MPC frameworks [16, 23, 26, 28, 49,
67,103]. Heuristics automatically optimize the computation’s
data flow and, in some cases, partition the data flow and select
optimal MPC protocols for all partitions. These optimization
techniques are orthogonal to CoVault’s design and can be
applied to its future implementations.

Encrypted databases like CryptDB [91] protect data at rest
only. Early work used weak encryption like deterministic or
order-preserving encryption, later shown to be inadequate for
security [19, 55]. Blind Seer [87] uses strong encryption and

2PC to traverse a specialized index, but leaks information
about its search tree traversal. These systems do not protect
data in use.

Privacy-preserving data donation systems Anonify [51]
provides data-source and attribute anonymity for donated
medical records. This system focuses on anonymization, as-
sumes passive security, cannot handle millions of records, and
reveals sampled anonymized records. In contrast, CoVault fo-
cuses on secure computation, executes queries, and reveals
only query results (with SFC compliance and support for
differential privacy).

8 Conclusion

CoVault relies on a set of colocated MPC parties, each exe-
cuting in a TEE of a different vendor. Because CoVault is not
impeded by the limits of WAN communication during query
processing, it can scale out and leverage the resources of a
datacenter to support big data analytics over data from indi-
vidual sources, with distributed trust and malicious security.
CoVault scales out to epidemic analytics queries for a country
of 80M people and billions of records at a cost of a core pair
for every 30,000 people.

9 Acknowledgments

We thank Gilles Barthe, Jonathan Katz, Matthew Lentz, Chang
Liu, and Elaine Shi for discussions and contributions to early
versions of this work; Hongjie Liu for advice on relevant
epidemiological queries; Xiao Wang and Chenkai Weng for
their help with emp-toolkit; Lorenzo Alvisi, Natacha Crooks,
Aastha Mehta, Lillian Tsai, Vaastav Anand, and several anony-
mous reviewers for their feedback on earlier drafts of this
paper. Finally, we are grateful to the anonymous shepherd
and reviewers of Usenix Security 2025 for their insightful
feedback and suggestions. This work was supported in part
by the Max Planck Society, the US National Science Founda-
tion Graduate Research Fellowship Program under Grant No.
DGE 1840340, the European Research Council (ERC Syn-
ergy imPACT 610150), and the German Science Foundation
(DFG CRC 1223).

10 Ethics Considerations

We carefully considered ethical implications throughout the
development of CoVault. In fact, the motivation of our work
is based on the principle of public welfare without compro-
mising security (§1).

Our design includes explicit user consent (which we call se-
lective forward consent or SFC). It provides full transparency
and control to data owners in terms of how, by whom and until
when their data can be used. We integrate technical means to
enforce SFC with TEEs, and Appendix A of our TR explains

580 34th USENIX Security Symposium USENIX Association

how TEE attestation, which is a building block, can be made
practical using community processes.

Thanks to the data obliviousness of MPC circuits, we did
not need any real data to obtain accurate performance mea-
surements. All our experiments are based on synthetic data
that we generated ourselves.

11 Open Science

This paper is accompanied by an open-source artifact, which
includes the code for the experiments in § 6, as well as
the scripts to execute the code and produce results. The
prototype uses synthetic datasets that are generated by the
code. The results reported in the paper were obtained by
running the scripts in Google Cloud Compute Engine follow-
ing the setup described in § 6.1. The artifact is available at
https://zenodo.org/records/14736568.

References

[1] GitHub: AMDSEV (sev-snp-devel). https:
//github.com/AMDESE/AMDSEV/tree/sev-snp-
devel. Accessed: 2025-01-20.

[2] Github: FastGC. https://github.com/yhuang912/
FastGC. Accessed: 2025-01-20.

[3] GitHub: Nethogs. https://github.com/raboof/
nethogs. Accessed: 2025-01-20.

[4] Council of the EU. Council approves Data Governance
Act. https://tinyurl.com/consilium-europa-
dga, 2022. Accessed: 2025-01-20.

[5] Microsoft Azure: What is guest attestation for con-
fidential VMs? https://learn.microsoft.com/
en-us/azure/confidential-computing/guest-
attestation-confidential-vms, 2022. Accessed:
2025-01-20.

[6] Google Cloud: Confidential VM attestation. https:
//cloud.google.com/confidential-computing/
confidential-vm/docs/attestation, 2024.
Accessed: 2025-01-20.

[7] Google Cloud: Confidential VM overview. https:
//cloud.google.com/confidential-computing/
confidential-vm/docs/confidential-vm-
overview, 2024. Accessed: 2025-01-20.

[8] Microsoft Azure: Azure Confidential VM options.
https://learn.microsoft.com/en-us/azure/
confidential-computing/virtual-machine-
options, 2024. Accessed: 2025-01-20.

[9] AMD. AMD SEV-SNP: Strengthening VM
Isolation with Integrity Protection and More.
https://www.amd.com/content/dam/amd/
en/documents/epyc-business-docs/white-
papers/SEV-SNP-strengthening-vm-isolation-
with-integrity-protection-and-more.pdf,
2020. Accessed: 2025-01-20.

[10] S. Angel, A. Basu, W. Cui, T. Jaeger, S. Lau, S. T. V.
Setty, and S. Singanamalla. Nimble: Rollback Pro-
tection for Confidential Cloud Services. In R. Geam-
basu and E. Nightingale, editors, 17th USENIX Sym-
posium on Operating Systems Design and Implemen-
tation, OSDI 2023, pages 193–208. USENIX Associa-
tion, 2023.

[11] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Koss-
mann, R. Ramamurthy, and R. Venkatesan. Orthogonal
Security with Cipherbase. In Sixth Biennial Confer-
ence on Innovative Data Systems Research, CIDR 2013.
www.cidrdb.org, 2013.

[12] A. Arasu and R. Kaushik. Oblivious query processing.
In N. Schweikardt, V. Christophides, and V. Leroy, edi-
tors, Proc. 17th International Conference on Database
Theory (ICDT), 2014, pages 26–37. OpenProceed-
ings.org, 2014.

[13] ARM. ARM Confidential Compute Architec-
ture (CCA). https://developer.arm.com/
architectures/architecture-security-
features/confidential-computing. Accessed
2025-01-20.

[14] S. Bajaj and R. Sion. TrustedDB: a trusted hardware
based database with privacy and data confidentiality.
In T. K. Sellis, R. J. Miller, A. Kementsietsidis, and
Y. Velegrakis, editors, Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2011, pages 205–216. ACM, 2011.

[15] K. E. Batcher. Sorting Networks and Their Applica-
tions. In American Federation of Information Pro-
cessing Societies: AFIPS Conference Proceedings:
1968 Spring Joint Computer Conference, volume 32
of AFIPS Conference Proceedings, pages 307–314.
Thomson Book Company, Washington D.C., 1968.

[16] J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and
J. Rogers. SMCQL: Secure Query Processing for Pri-
vate Data Networks. Proc. VLDB Endow., 10(6):673–
684, 2017.

[17] A. Baumann, M. Peinado, and G. C. Hunt. Shielding
Applications from an Untrusted Cloud with Haven.
ACM Trans. Comput. Syst., 33(3):8:1–8:26, 2015.

USENIX Association 34th USENIX Security Symposium 581

https://zenodo.org/records/14736568
https://github.com/AMDESE/AMDSEV/tree/sev-snp-devel
https://github.com/AMDESE/AMDSEV/tree/sev-snp-devel
https://github.com/AMDESE/AMDSEV/tree/sev-snp-devel
https://github.com/yhuang912/FastGC
https://github.com/yhuang912/FastGC
https://github.com/raboof/nethogs
https://github.com/raboof/nethogs
https://tinyurl.com/consilium-europa-dga
https://tinyurl.com/consilium-europa-dga
https://learn.microsoft.com/en-us/azure/confidential-computing/guest-attestation-confidential-vms
https://learn.microsoft.com/en-us/azure/confidential-computing/guest-attestation-confidential-vms
https://learn.microsoft.com/en-us/azure/confidential-computing/guest-attestation-confidential-vms
https://cloud.google.com/confidential-computing/confidential-vm/docs/attestation
https://cloud.google.com/confidential-computing/confidential-vm/docs/attestation
https://cloud.google.com/confidential-computing/confidential-vm/docs/attestation
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-options
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-options
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-options
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.arm.com/architectures/architecture-security-features/confidential-computing
https://developer.arm.com/architectures/architecture-security-features/confidential-computing
https://developer.arm.com/architectures/architecture-security-features/confidential-computing

[18] M. Ben-Or, S. Goldwasser, and A. Wigderson. Com-
pleteness Theorems for Non-Cryptographic Fault-
Tolerant Distributed Computation (Extended Abstract).
In J. Simon, editor, Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, pages 1–10.
ACM, 1988.

[19] V. Bindschaedler, P. Grubbs, D. Cash, T. Risten-
part, and V. Shmatikov. The Tao of Inference in
Privacy-Protected Databases. Proc. VLDB Endow.,
11(11):1715–1728, 2018.

[20] S. Bugiel, S. Nürnberger, A. Sadeghi, and T. Schnei-
der. Twin Clouds: Secure Cloud Computing with Low
Latency - (Full Version). In B. De Decker, J. Lapon,
V. Naessens, and A. Uhl, editors, Communications and
Multimedia Security, 12th IFIP TC 6 / TC 11 Interna-
tional Conference, CMS 2011. Proceedings, volume
7025 of Lecture Notes in Computer Science, pages 32–
44. Springer, 2011.

[21] L. Burkhalter, A. Hithnawi, A. Viand, H. Shafagh, and
S. Ratnasamy. TimeCrypt: Encrypted Data Stream Pro-
cessing at Scale with Cryptographic Access Control.
In R. Bhagwan and G. Porter, editors, 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2020, pages 835–850. USENIX As-
sociation, 2020.

[22] L. Burkhalter, N. Küchler, A. Viand, H. Shafagh, and
A. Hithnawi. Zeph: Cryptographic Enforcement of
End-to-End Data Privacy. In A. D. Brown and J. R.
Lorch, editors, 15th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2021,
pages 387–404. USENIX Association, 2021.

[23] N. Büscher, D. Demmler, S. Katzenbeisser, D. Kret-
zmer, and T. Schneider. HyCC: Compilation of Hybrid
Protocols for Practical Secure Computation. In D. Lie,
M. Mannan, M. Backes, and X. Wang, editors, Pro-
ceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018,
pages 847–861. ACM, 2018.

[24] L. Carter and M. N. Wegman. Universal Classes of
Hash Functions. J. Comput. Syst. Sci., 18(2):143–154,
1979.

[25] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto. SoK:
Understanding the Prevailing Security Vulnerabilities
in TrustZone-assisted TEE Systems. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, pages
1416–1432. IEEE, 2020.

[26] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and
S. Tripathi. EzPC: Programmable and Efficient Secure
Two-Party Computation for Machine Learning. In

IEEE European Symposium on Security and Privacy,
EuroS&P 2019, pages 496–511. IEEE, 2019.

[27] M. Chase, E. Ghosh, and O. Poburinnaya. Secret-
Shared Shuffle. In S. Moriai and H. Wang, editors,
Advances in Cryptology - ASIACRYPT 2020 - 26th In-
ternational Conference on the Theory and Application
of Cryptology and Information Security, Proceedings,
Part III, volume 12493 of Lecture Notes in Computer
Science, pages 342–372. Springer, 2020.

[28] E. Chen, J. Zhu, A. Ozdemir, R. S. Wahby, F. Brown,
and W. Zheng. Silph: A Framework for Scalable and
Accurate Generation of Hybrid MPC Protocols. In
44th IEEE Symposium on Security and Privacy, SP
2023, pages 848–863. IEEE, 2023.

[29] A. R. Chowdhury, C. Wang, X. He, A. Machanava-
jjhala, and S. Jha. Cryptε: Crypto-assisted differential
privacy on untrusted servers. In Proc. SIGMOD. ACM,
2020.

[30] European Commission. European Data Governance
Act. https://digital-strategy.ec.europa.eu/
en/policies/data-governance-act. Accessed
2025-01-20.

[31] European Commission. European Data Strategy.
https://commission.europa.eu/strategy-
and-policy/priorities-2019-2024/europe-
fit-digital-age/european-data-strategy_en.
Accessed 2025-01-20.

[32] G. Connell, V. Fang, R. Schmidt, E. Dauterman, and
R. Ada Popa. Secret Key Recovery in a Global-Scale
End-to-End Encryption System. In A. Gavrilovska
and D. B. Terry, editors, 18th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2024, pages 703–719. USENIX Association, 2024.

[33] H. Corrigan-Gibbs and D. Boneh. Prio: Private, Ro-
bust, and Scalable Computation of Aggregate Statis-
tics. In A. Akella and J. Howell, editors, 14th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2017, pages 259–282. USENIX As-
sociation, 2017.

[34] H. Corrigan-Gibbs and D. Kogan. Private Informa-
tion Retrieval with Sublinear Online Time. In Anne
Canteaut and Yuval Ishai, editors, Advances in Cryptol-
ogy - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, Proceedings, Part I, volume 12105
of Lecture Notes in Computer Science, pages 44–75.
Springer, 2020.

[35] V. Costan and S. Devadas. Intel SGX explained. IACR
Cryptol. ePrint Arch., page 86, 2016.

582 34th USENIX Security Symposium USENIX Association

https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-data-strategy_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-data-strategy_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-data-strategy_en

[36] R. Cramer, I. Damgård, and J. B. Nielsen. Secure Mul-
tiparty Computation and Secret Sharing. Cambridge
University Press, 2015.

[37] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Universal
Service-Providers for Private Information Retrieval. J.
Cryptol., 14(1):37–74, 2001.

[38] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias.
Multiparty Computation from Somewhat Homomor-
phic Encryption. In R. Safavi-Naini and R. Canetti, ed-
itors, Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings, volume 7417
of Lecture Notes in Computer Science, pages 643–662.
Springer, 2012.

[39] E. Dauterman, V. Fang, N. Crooks, and R. A. Popa.
Reflections on trusting distributed trust. In Proceedings
of the 21st ACM Workshop on Hot Topics in Networks,
HotNets 2022, pages 38–45. ACM, 2022.

[40] E. Dauterman, V. Fang, I. Demertzis, N. Crooks, and
R. A. Popa. Snoopy: Surpassing the scalability bot-
tleneck of oblivious storage. In R. van Renesse and
N. Zeldovich, editors, SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Koblenz,
Germany, October 26-29, 2021, pages 655–671. ACM,
2021.

[41] E. Dauterman, M. Rathee, R. A. Popa, and I. Stoica.
Waldo: A Private Time-Series Database from Function
Secret Sharing. In 43rd IEEE Symposium on Security
and Privacy, SP 2022, pages 2450–2468. IEEE, 2022.

[42] A. Dave, C. Leung, R. A. Popa, J. E. Gonzalez,
and I. Stoica. Oblivious coopetitive analytics using
hardware enclaves. In A. Bilas, K. Magoutis, E. P.
Markatos, D. Kostic, and M. I. Seltzer, editors, Eu-
roSys ’20: Fifteenth EuroSys Conference 2020, pages
39:1–39:17. ACM, 2020.

[43] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In E. A. Brewer
and P. Chen, editors, 6th Symposium on Operating Sys-
tem Design and Implementation (OSDI 2004), pages
137–150. USENIX Association, 2004.

[44] T. T. A. Dinh, P. Saxena, E. Chang, B. C. Ooi, and
C. Zhang. M2R: enabling stronger privacy in mapre-
duce computation. In J. Jung and T. Holz, editors, 24th
USENIX Security Symposium, USENIX Security 2015,
pages 447–462. USENIX Association, 2015.

[45] D. Doerner, J. Mechler, and J. Müller-Quade. Hard-
ening the Security of Server-Aided MPC Using Re-
motely Unhackable Hardware Modules. In C. Wress-
negger, D. Reinhardt, T. Barber, B. C. Witt, D. Arp,

and Z. Mann, editors, Sicherheit, Schutz und Zuverläs-
sigkeit: Konferenzband der 11. Jahrestagung des Fach-
bereichs Sicherheit der Gesellschaft für Informatik e.V.
(GI), Sicherheit 2022, Karlsruhe, Germany, April 5-8,
2022, volume P-323 of LNI, pages 83–99. Gesellschaft
für Informatik e.V., 2022.

[46] J. Doerner and A. Shelat. Scaling ORAM for Se-
cure Computation. In B. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, editors, Proceedings of the 2017
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, pages 523–535. ACM,
2017.

[47] S. Eskandarian and D. Boneh. Clarion: Anonymous
Communication from Multiparty Shuffling Protocols.
In 29th Annual Network and Distributed System Se-
curity Symposium, NDSS 2022. The Internet Society,
2022.

[48] S. Eskandarian and M. Zaharia. ObliDB: Oblivious
Query Processing for Secure Databases. Proc. VLDB
Endow., 13(2):169–183, 2019.

[49] V. Fang, L. Brown, W. Lin, W. Zheng, A. Panda, and
R. A. Popa. CostCO: An automatic cost modeling
framework for secure multi-party computation. In 7th
IEEE European Symposium on Security and Privacy,
EuroS&P 2022, pages 140–153. IEEE, 2022.

[50] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Ker-
schbaum, and A. Sadeghi. HardIDX: Practical and
secure index with SGX in a malicious environment. J.
Comput. Secur., 26(5):677–706, 2018.

[51] S. A. Gaballah, L. Abdullah, M. Alishahi, T. H. L.
Nguyen, E. Zimmer, M. Mühlhäuser, and K. Marky.
Anonify: Decentralized Dual-level Anonymity for
Medical Data Donation. Proc. Priv. Enhancing Tech-
nol., 2024(3):94–108, 2024.

[52] O. Goldreich, S. Micali, and A. Wigderson. How to
Play any Mental Game or A Completeness Theorem for
Protocols with Honest Majority. In A. V. Aho, editor,
Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, pages 218–229. ACM,
1987.

[53] O. Goldreich and R. Ostrovsky. Software Protec-
tion and Simulation on Oblivious RAMs. J. ACM,
43(3):431–473, 1996.

[54] M. T. Goodrich. Data-oblivious external-memory al-
gorithms for the compaction, selection, and sorting of
outsourced data. In R. Rajaraman and F. Meyer auf der
Heide, editors, SPAA 2011: Proceedings of the 23rd
Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pages 379–388. ACM, 2011.

USENIX Association 34th USENIX Security Symposium 583

[55] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why Your
Encrypted Database Is Not Secure. In A. Fedorova,
A. Warfield, I. Beschastnikh, and R. Agarwal, editors,
Proceedings of the 16th Workshop on Hot Topics in Op-
erating Systems, HotOS 2017, pages 162–168. ACM,
2017.

[56] P. Gupta, Y. Li, S. Mehrotra, N. Panwar, S. Sharma, and
S. Almanee. Obscure: Information-Theoretic Oblivi-
ous and Verifiable Aggregation Queries. Proc. VLDB
Endow., 12(9):1030–1043, 2019.

[57] B. Hemenway, D. Noble, R. Ostrovsky, M. Shtepel,
and J. Zhang. DORAM Revisited: Maliciously Secure
RAM-MPC with Logarithmic Overhead. In G. N. Roth-
blum and H. Wee, editors, Theory of Cryptography -
21st International Conference, TCC 2023, Proceedings,
Part I, volume 14369 of Lecture Notes in Computer
Science, pages 441–470. Springer, 2023.

[58] W. L. Holland, O. Ohrimenko, and A. Wirth. Efficient
Oblivious Permutation via the Waksman Network. In
Y. Suga, K. Sakurai, X. Ding, and K. Sako, editors,
ASIA CCS ’22: ACM Asia Conference on Computer
and Communications Security, pages 771–783. ACM,
2022.

[59] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Se-
cure Two-Party Computation Using Garbled Circuits.
In 20th USENIX Security Symposium 2011, Proceed-
ings. USENIX Association, 2011.

[60] Y. Huang, J. Katz, and D. Evans. Quid-Pro-Quo-tocols:
Strengthening Semi-honest Protocols with Dual Execu-
tion. In IEEE Symposium on Security and Privacy, SP
2012, pages 272–284. IEEE Computer Society, 2012.

[61] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan:
A distributed sandbox for untrusted computation on
secret data. ACM Trans. Comput. Syst., 35(4):13:1–
13:32, 2017.

[62] Intel. Intel Trust Domain Extensions (Intel TDX).
https://www.intel.com/content/dam/develop/
external/us/en/documents/tdx-whitepaper-
final9-17.pdf. Accessed 2025-01-20.

[63] Intel. Introduction to Intel SGX Sealing.
https://www.intel.com/content/www/us/en/
developer/articles/technical/introduction-
to-intel-sgx-sealing.html. Accessed 2025-01-
20.

[64] T. P. Jakobsen, J. B. Nielsen, and C. Orlandi. A Frame-
work for Outsourcing of Secure Computation. In
G. Ahn, A. Oprea, and R. Safavi-Naini, editors, Pro-
ceedings of the 6th edition of the ACM Workshop on

Cloud Computing Security, CCSW ’14, pages 81–92.
ACM, 2014.

[65] J. Katz and Y. Lindell. Introduction to Modern Cryp-
tography. CRC Press, 2014.

[66] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang. Opti-
mizing Authenticated Garbling for Faster Secure Two-
Party Computation. In H. Shacham and A. Boldyreva,
editors, Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, 2018,
Proceedings, Part III, volume 10993 of Lecture Notes
in Computer Science, pages 365–391. Springer, 2018.

[67] M. Keller. MP-SPDZ: A versatile framework for multi-
party computation. In J. Ligatti, X. Ou, J. Katz, and
G. Vigna, editors, CCS ’20: 2020 ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 1575–1590. ACM, 2020.

[68] J. Kelsey, S. Chang, and R. Perlner. SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash and Parallel-
Hash, 2016. NIST Special Publication 800-185.

[69] F. Kerschbaum. Oblivious outsourcing of garbled cir-
cuit generation. In R. L. Wainwright, J. M. Corchado,
A. Bechini, and J. Hong, editors, Proceedings of the
30th Annual ACM Symposium on Applied Computing,
2015, pages 2134–2140. ACM, 2015.

[70] V. Kolesnikov, P. Mohassel, B. Riva, and M. Rosulek.
Richer Efficiency/Security Trade-offs in 2PC. In
Y. Dodis and J. B. Nielsen, editors, Theory of Cryp-
tography - 12th Theory of Cryptography Conference,
TCC 2015, Proceedings, Part I, volume 9014 of Lecture
Notes in Computer Science, pages 229–259. Springer,
2015.

[71] H. Krawczyk. LFSR-based Hashing and Authentica-
tion. In Yvo G. Desmedt, editor, Advances in Cryptol-
ogy — CRYPTO ’94, volume 839 of Lecture Notes in
Computer Science, pages 129–139. Springer, 1994.

[72] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Ras-
togi, and R. Sharma. CrypTFlow: Secure TensorFlow
Inference. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, pages 336–353. IEEE, 2020.

[73] OASIS labs. A better way to Contact Trace, Part
I. https://medium.com/oasislabs/a-better-
way-to-contact-trace-7beb12889017. Accessed
2025-01-20.

[74] OASIS labs. A better way to Contact Trace, Part II.
https://medium.com/oasislabs/a-better-way-
to-contact-trace-part-ii-code-to-back-it-
up-50046c4fa6e1. Accessed 2025-01-20.

584 34th USENIX Security Symposium USENIX Association

https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://medium.com/oasislabs/a-better-way-to-contact-trace-7beb12889017
https://medium.com/oasislabs/a-better-way-to-contact-trace-7beb12889017
https://medium.com/oasislabs/a-better-way-to-contact-trace-part-ii-code-to-back-it-up-50046c4fa6e1
https://medium.com/oasislabs/a-better-way-to-contact-trace-part-ii-code-to-back-it-up-50046c4fa6e1
https://medium.com/oasislabs/a-better-way-to-contact-trace-part-ii-code-to-back-it-up-50046c4fa6e1

[75] S. Laur, J. Willemson, and B. Zhang. Round-Efficient
Oblivious Database Manipulation. In X. Lai, J. Zhou,
and H. Li, editors, Information Security, 14th Inter-
national Conference, ISC 2011. Proceedings, volume
7001 of Lecture Notes in Computer Science, pages 262–
277. Springer, 2011.

[76] M. Li, Y. Yang, G. Chen, M. Yan, and Y. Zhang. SoK:
Understanding Design Choices and Pitfalls of Trusted
Execution Environments. In Jianying Zhou, Tony Q. S.
Quek, Debin Gao, and Alvaro A. Cárdenas, editors,
Proceedings of the 19th ACM Asia Conference on Com-
puter and Communications Security, ASIA CCS 2024.
ACM, 2024.

[77] U. Maheshwari, R. Vingralek, and W. Shapiro. How to
Build a Trusted Database System on Untrusted Storage.
In M. B. Jones and M. F. Kaashoek, editors, 4th Sympo-
sium on Operating System Design and Implementation
(OSDI 2000), pages 135–150. USENIX Association,
2000.

[78] E. Margolin, K. Newatia, T. Luo, E. Roth, and A. Hae-
berlen. Arboretum: A planner for large-scale federated
analytics with differential privacy. In J. Flinn, M. I.
Seltzer, P. Druschel, A. Kaufmann, and J. Mace, edi-
tors, Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP 2023, pages 451–465. ACM,
2023.

[79] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. M.
Sommer, A. Gervais, A. Juels, and D. Capkun. ROTE:
rollback protection for trusted execution. In E. Kirda
and T. Ristenpart, editors, 26th USENIX Security Sym-
posium, USENIX Security 2017, pages 1289–1306.
USENIX Association, 2017.

[80] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A.
Popa. Oblix: An Efficient Oblivious Search Index. In
2018 IEEE Symposium on Security and Privacy, SP
2018, pages 279–296. IEEE Computer Society, 2018.

[81] P. Mohassel and Y. Zhang. SecureML: A System for
Scalable Privacy-Preserving Machine Learning. In
2017 IEEE Symposium on Security and Privacy, SP
2017, pages 19–38. IEEE Computer Society, 2017.

[82] K. Nayak, X. Shaun Wang, S. Ioannidis, U. Weinsberg,
N. Taft, and E. Shi. GraphSC: Parallel Secure Com-
putation Made Easy. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, pages 377–394. IEEE
Computer Society, 2015.

[83] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis,
M. Kohlweiss, and D. Sharma. Observing and Pre-
venting Leakage in MapReduce. In I. Ray, N. Li,
and C. Kruegel, editors, Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communica-
tions Security, 2015, pages 1570–1581. ACM, 2015.

[84] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa. Oblivious
multi-party machine learning on trusted processors. In
T. Holz and S. Savage, editors, 25th USENIX Security
Symposium, USENIX Security 2016, pages 619–636.
USENIX Association, 2016.

[85] F. G. Olumofin and I. Goldberg. Privacy-Preserving
Queries over Relational Databases. In M. J. Atallah
and N. J. Hopper, editors, Privacy Enhancing Tech-
nologies, 10th International Symposium, PETS 2010.
Proceedings, volume 6205 of Lecture Notes in Com-
puter Science, pages 75–92. Springer, 2010.

[86] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ram-
jee, A. Haeberlen, H. Singh, A. Modi, and S. Badri-
narayanan. Big Data Analytics over Encrypted
Datasets with Seabed. In K. Keeton and T. Roscoe,
editors, 12th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2016, pages
587–602. USENIX Association, 2016.

[87] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin,
S. G. Choi, W. George, A. D. Keromytis, and S. M.
Bellovin. Blind Seer: A Scalable Private DBMS. In
2014 IEEE Symposium on Security and Privacy, SP
2014, pages 359–374. IEEE Computer Society, 2014.

[88] B. Parno, J. R. Lorch, J. R. Douceur, J. W. Mickens,
and J. M. McCune. Memoir: Practical State Continuity
for Protected Modules. In 32nd IEEE Symposium on
Security and Privacy, SP 2011, pages 379–394. IEEE
Computer Society, 2011.

[89] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams.
Secure Two-Party Computation Is Practical. In M. Mat-
sui, editor, Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, 2009.
Proceedings, volume 5912 of Lecture Notes in Com-
puter Science, pages 250–267. Springer, 2009.

[90] R. Poddar, S. Kalra, A. Yanai, R. Deng, R. A. Popa, and
J. M. Hellerstein. Senate: A maliciously-secure MPC
platform for collaborative analytics. In M. D. Bai-
ley and R. Greenstadt, editors, 30th USENIX Security
Symposium, USENIX Security 2021, pages 2129–2146.
USENIX Association, 2021.

[91] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: protecting confidential-
ity with encrypted query processing. In T. Wobber and
P. Druschel, editors, Proceedings of the 23rd ACM Sym-
posium on Operating Systems Principles 2011, SOSP
2011, pages 85–100. ACM, 2011.

USENIX Association 34th USENIX Security Symposium 585

[92] C. Priebe, K. Vaswani, and M. Costa. EnclaveDB: A
Secure Database Using SGX. In 2018 IEEE Sympo-
sium on Security and Privacy, SP 2018, Proceedings,
pages 264–278. IEEE Computer Society, 2018.

[93] T. Rabin and M. Ben-Or. Verifiable Secret Sharing
and Multiparty Protocols with Honest Majority. In
D. S. Johnson, editor, Proceedings of the 21st Annual
ACM Symposium on Theory of Computing, 1989, pages
73–85. ACM, 1989.

[94] M. Rathee, C. Shen, S. Wagh, and R. A. Popa. ELSA:
secure aggregation for federated learning with mali-
cious actors. In 44th IEEE Symposium on Security and
Privacy, SP 2023, pages 1961–1979. IEEE, 2023.

[95] Q. Ren, Y. Li, Y. Wu, Y. Wu, H. Lei, L. Wang, and
B. Chen. DeCloak: Enable Secure and Cheap Multi-
Party Transactions on Legacy Blockchains by a Mini-
mally Trusted TEE Network. IEEE Trans. Inf. Foren-
sics Secur., 19:88–103, 2024.

[96] F. Schuster, M. Costa, C., C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. VC3: trustwor-
thy data analytics in the cloud using SGX. In 2015
IEEE Symposium on Security and Privacy, SP 2015,
pages 38–54. IEEE Computer Society, 2015.

[97] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armis-
tead, R. Bannon, S. Boving, G. Desai, B. Felderman,
P. Germano, A. Kanagala, H. Liu, J. Provost, J. Sim-
mons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and
A. Vahdat. Jupiter rising: a decade of clos topologies
and centralized control in Google’s datacenter network.
Commun. ACM, 59(9):88–97, 2016.

[98] TOKI. Multi-prover for IBC Connection: Enhancing
Security with a Combination of SGX, MPC and ZKP.
https://medium.com/@tokifinance/multi-
prover-for-ibc-connection-169862263739.
Accessed 2025-01-20.

[99] A. Viand, P. Jattke, and A. Hithnawi. SoK: Fully Ho-
momorphic Encryption Compilers. In 42nd IEEE Sym-
posium on Security and Privacy, SP 2021, pages 1092–
1108. IEEE, 2021.

[100] D. Vinayagamurthy, A. Gribov, and S. Gorbunov.
StealthDB: a Scalable Encrypted Database with Full
SQL Query Support. Proc. Priv. Enhancing Technol.,
2019(3):370–388, 2019.

[101] R. Vingralek. GnatDb: A Small-Footprint, Secure
Database System. In Proceedings of 28th International
Conference on Very Large Data Bases, VLDB 2002,
pages 884–893. Morgan Kaufmann, 2002.

[102] R. De Viti, I. Sheff, N. Glaeser, B. Dinis, R. Rodrigues,
B. Bhattacharjee, A. Hithnawi, D. Garg, and P. Dr-
uschel. CoVault: Secure, Scalable Analytics of Per-
sonal Data. CoRR, abs/2208.03784, 2022. Last revised
in 2025.

[103] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia,
A. Lapets, and A. Bestavros. Conclave: secure multi-
party computation on big data. In G. Candea, R. van
Renesse, and C. Fetzer, editors, Proceedings of the
Fourteenth EuroSys Conference 2019, pages 3:1–3:18.
ACM, 2019.

[104] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan,
and M. Zaharia. Splinter: Practical Private Queries
on Public Data. In A. Akella and J. Howell, editors,
14th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2017, pages 299–313.
USENIX Association, 2017.

[105] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit:
Efficient MultiParty computation toolkit. https://
github.com/emp-toolkit, 2016. Accessed: 2025-
01-20.

[106] X. Wang, S. Ranellucci, and J. Katz. Authenticated Gar-
bling and Efficient Maliciously Secure Two-Party Com-
putation. In B. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, pages 21–37. ACM, 2017.

[107] X. Wang, S. Ranellucci, and J. Katz. Global-Scale
Secure Multiparty Computation. In B. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, pages 39–56.
ACM, 2017.

[108] P. Wu, J. Ning, J. Shen, H. Wang, and E. Chang. Hybrid
Trust Multi-party Computation with Trusted Execution
Environment. In 29th Annual Network and Distributed
System Security Symposium, NDSS 2022. The Internet
Society, 2022.

[109] A. C. Yao. Protocols for Secure Computations. In
23rd Annual Symposium on Foundations of Computer
Science, 1982, pages 160–164. IEEE Computer Society,
1982.

[110] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and I. Stoica. Opaque: An Oblivious and
Encrypted Distributed Analytics Platform. In A. Akella
and J. Howell, editors, 14th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2017, pages 283–298. USENIX Association, 2017.

586 34th USENIX Security Symposium USENIX Association

https://medium.com/@tokifinance/multi-prover-for-ibc-connection-169862263739
https://medium.com/@tokifinance/multi-prover-for-ibc-connection-169862263739
https://github.com/emp-toolkit
https://github.com/emp-toolkit

	Introduction
	CoVault Overview
	Building blocks
	CoVault roadmap and threat model

	black Secure data processing
	Strawman (S1): Server-aided MPC
	Full construction (S2): S1 + TEEs
	black SDP construction details

	CoVault scalable analytics
	Executing queries at scale
	CoVault Database
	Query expressiveness and limitations

	CoVault prototype implementation
	Evaluation
	Prototype and experimental setup
	Microbenchmarks
	End-to-end scenario: Epidemic analytics
	Estimating query latency at scale

	CoVault versus existing work

	Related work
	Conclusion
	Acknowledgments
	Ethics Considerations
	Open Science

